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The genome of Austrofundulus limnaeus
offers insights into extreme vertebrate
stress tolerance and embryonic
development
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Abstract

Background: The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in northern Venezuela, South
America, and is an emerging extremophile model for vertebrate diapause, stress tolerance, and evolution. Embryos
of A. limnaeus regularly experience extended periods of desiccation and anoxia as a part of their natural history and
have unique metabolic and developmental adaptations. Currently, there are limited genomic resources available for
gene expression and evolutionary studies that can take advantage of A. limnaeus as a unique model system.

Results: We describe the first draft genome sequence of A. limnaeus. The genome was assembled de novo using a
merged assembly strategy and was annotated using the NCBI Eukaryotic Annotation Pipeline. We show that the
assembled genome has a high degree of completeness in genic regions that is on par with several other teleost
genomes. Using RNA-seq and phylogenetic-based approaches, we identify several candidate genes that may be
important for embryonic stress tolerance and post-diapause development in A. limnaeus. Several of these genes
include heat shock proteins that have unique expression patterns in A. limnaeus embryos and at least one of these
may be under positive selection.

Conclusion: The A. limnaeus genome is the first South American annual killifish genome made publicly available.
This genome will be a valuable resource for comparative genomics to determine the genetic and evolutionary
mechanisms that support the unique biology of annual killifishes. In a broader context, this genome will be a
valuable tool for exploring genome-environment interactions and their impacts on vertebrate physiology and
evolution.

Keywords: Annual killifish, Stress tolerance, Transcriptome, Gene expression, Fish genome, Positive selection,
Austrofundulus limnaeus, Development

Background
All vertebrates require oxygen and water to complete
their life cycles. However, environments are not always
forgiving when it comes to constantly providing these
basic needs for life. Many metazoans that thrive in
highly stressful or variable environments cope by

arresting development and entering into states of meta-
bolic depression [1–8]. Examples of organisms able to
cope with high environmental stress conditions are typ-
ically prokaryotes and invertebrates; extremophile verte-
brates are relatively rare. The annual killifish
Austrofundulus limnaeus (Schultz 1949) is one of the
best-described extremophile vertebrates and its embryos
have been shown to tolerate low to no oxygen, high and
low salinity, ultraviolet-C radiation exposure, and desic-
cation [9–12]. This stress-tolerant phenotype is essential
for survival in tropical and subtropical ephemeral ponds
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that experience periods of daily temperature fluctua-
tions, seasonal habitat desiccation, anoxia, and hypoxia
[13, 14]. Because adult annual killifishes are unable to en-
dure the dry season, populations persist due to the sur-
vival of drought-tolerant embryos that can depress
metabolism in a state of suspended animation, known as
diapause [7, 9]. Diapause may occur at three distinct
stages of development in annual killifishes, termed dia-
pause I, II, and III [15–17]. Diapause I (DI) can occur early
in development after completion of epiboly but prior to
the formation of the embryonic axis. Contrasting with the
typical pattern of convergence and extension of the
amoeboid (deep) embryonic blastomeres that is observed
in most other teleost embryos during epiboly, deep blasto-
meres of A. limnaeus dissociate and migrate away from
each other across the yolk surface during epiboly [18, 19].
Essentially, this process appears to temporally disconnect
epiboly from germ layer formation in annual killifishes
and these deep cells can remain dispersed across the yolk
surface for several days before reaggregating and forming
a definitive embryonic axis [16]. Although the biological
significance and mechanism of this phenomenon are still
unclear, it has been suggested that the spatial arrangement
of embryonic cells in DI may allow damaged cells to be
“sloughed” and replaced by surrounding pluripotent cells
[12, 16]. This phenomenon may be facilitated by unique
expression of genes important for gastrulation [20]. Dia-
pause II (DII) occurs in the long-somite embryo approxi-
mately midway through development, just prior to the
major phases of organogenesis, and appears to be the
most stress-resistant diapause stage [15, 17, 21]. Finally,
embryos can arrest as a late pre-hatching embryo in dia-
pause III (DIII) rather than immediately hatching [17, 22].
While the majority of A. limnaeus embryos will enter into
DII, a small proportion of “escape” embryos will bypass
DII and instead develop directly to DIII or hatching [17,
23]. Importantly, entrance into diapause is an alternative
developmental trajectory that is unique biochemically,
physiologically, and morphologically from escape
embryos.
The unique biology of A. limnaeus and other annual

killifishes provides an exceptional opportunity to study
questions related to stress physiology, development, and
evolution by making comparisons within species and
across species [2, 21, 24]. One of the best-studied exam-
ples of A. limnaeus as an important and unique model
organism stems from the extreme anoxia tolerance of its
embryos, having the highest known tolerance compared
to any other vertebrate after temperature is considered
[11]. In contrast, insufficient oxygen quickly leads to dis-
ruption of cellular homeostasis and cell death in mam-
mals during similar developmental stages, and especially
in adult mammalian tissues [25, 26]. This tolerance in A.
limnaeus embryos peaks at DII (LD50 anoxia = 65 days)

and is retained for up to 4 days post-diapause (dpd) [11].
Importantly, 4 dpd embryos are physiologically and de-
velopmentally distinct from DII embryos, as they have
reentered the cell cycle and are metabolically active, and
therefore are a model that can have broader implications
for comparative studies to other vertebrates. Although
the metabolic and cell cycle mechanisms that may sup-
port extreme anoxia tolerance and post-DII (PDII) de-
velopment have previously been explored [11, 27–29], a
comprehensive study of the genetic, evolutionary, and
gene expression mechanisms that may support the
unique features of A. limnaeus and other annual killi-
fishes has yet to be performed. Recent work on the
African annual killifish, Nothobranchius furzeri, suggests
that positive selection on N. furzeri genes may have a role
in determining the annual killifish phenotype [30, 31]. Be-
cause it has long been hypothesized that annualism was
evolved independently several times within the killifish
families Rivulidae and Nothobranchidae [32–34], deter-
mining if the evolutionary mechanisms are shared be-
tween different annual killifish lineages will have broad
implications for the understanding of complex phenotype
evolution.
The development of an A. limnaeus genomics resource

is essential for understanding the evolutionary back-
ground of its unique phenotype, and is a necessary tool
for functional research such as RNA-seq based expres-
sion studies. In this work we present the first de novo
draft genome assembly and annotation of a lab reared A.
limnaeus individual originating from a population near
the town of Quisiro, in the Maracaibo Basin of
Venezuela [35]. This population has been bred under la-
boratory conditions since 1995 and is currently main-
tained at the Center for Life in Extreme Environments
Aquatics Facility, Portland State University, Portland,
OR. We show for the first time the gene expression pro-
files that support extreme anoxia tolerance and post-
diapause development, as well as potential genes under
positive selection in the A. limnaeus lineage compared
to several teleost species. The resulting genome and an-
notation is the first publicly available representative of a
South American annual killifish and we discuss several
genes of interest for future studies in stress tolerance
and vertebrate development.

Results
Estimation of genome size
Flow cytometry quantification of propidium iodide fluor-
escence intensity yields an estimated genome size for A.
limnaeus of 1.03 Gbp when Danio rerio (zebrafish) and
Gallus gallus (domestic chicken) free-nuclei were used
as standards (Fig. 1). A. limnaeus genome size was also
estimated by k-mer frequency in Allpaths-LG [36]. This
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sequence-based method estimated the genome at 974
Mbp, about 5% smaller than the flow cytometry estimate
(Table 1).

Genome assembly and annotation results
To provide a high-quality genome for annotation, we
used a merged assembly strategy that utilized mate-pair
libraries for scaffolding. Of the initial read pool used as
input for Allpaths-LG, the assembler used 65.6% and
28.6% of the fragment and jumping libraries, respect-
ively, for the initial assembly of the A. limnaeus genome
at a sequencing coverage of 94X. This Allpaths-LG as-
sembly produced 141,049 contigs longer than 1000 bp,
and within these contigs 650 Mbp was assembled. JR-
assembler assembled 370,267 contigs (> 500 bp) with an
N50 of 1.3 kbp and a total assembled length of 433
Mbp. After merging the two assembles with a graph ac-
cordance assembly program [37], the A. limnaeus draft
genome assembly v1.0 has 168,369 contigs, has a contig
N50 of 8.1 kb, and is 695 Mbp in total length. Use of
mate-pair libraries for scaffolding with SSPACE

organized contigs into 29,785 scaffolds, with an N50 of
1.1 Mbp, and increased the total sequence length to 867
Mbp, including gaps (Table 2). Based on the results of
our genome size estimates, between 84 and 89% of the
A. limnaeus genome is represented in the current draft
genome assembly. Core Eukaryotic Genes Mapping Ap-
proach (CEGMA) results indicate that 68.97%
(complete) and 95.96% (partial/complete) of 248 highly
conserved eukaryotic genes are present in the assembly
(Table 3). Benchmarking Universal Single-Copy Ortho-
logs (BUSCO) analysis using 3023 conserved vertebrate
genes indicates that 75% of these are completely present
in the assembly, 1.6% are duplicated, 12% are fragmen-
ted, and 11% are missing (Table 4). This draft assembly
Austrofundulus limnaeus 1.0 (GenBank accession
GCA_001266775.1) was annotated using the NCBI
Eukaryotic Genome Annotation Pipeline. A total of 9.3
billion RNA-seq reads were aligned to the A. limnaeus
genome at an average alignment frequency of 73%. This
automated pipeline was able to annotate 26,157 genes
and is publicly available on NCBI as the Austrofundulus
limnaeus Annotation Release 100. The complete feature
results of the NCBI Eukaryotic Genome Annotation
Pipeline for A. limnaeus are shown in Tables 5 and 6.
Using k-mer frequency, Allpaths-LG predicted the A.

limnaeus genome to have a G + C content of 41.6%, an
overall single nucleotide polymorphism rate of 1 in 147
bases, and to be 46% repetitive (Table 1). The total

Fig. 1 Linear relationship between genome size and propidium
iodide (PI) fluorescence. Nuclei were extracted from chicken and
zebrafish blood to infer the genome size of the A. limnaeus genome.
Replicates are plotted as individual data points and are overlapping
within the A. limnaeus 2 N and zebrafish 4 N points (n = 3 for
chicken and A. limnaeus, n = 2 for zebrafish 2 N and 4 N). The A.
limnaeus data point is an open circle. Zf, zebrafish; ch, chicken; Al,
A. limnaeus

Table 1 Species comparison of total estimated genomic GC and repeat content

Species Genome sizea (gb) GC% Repetitive% References

A. limnaeus 0.974–1.03 41.6 46 This work

Zebrafish 1.41 50.6 52.2 [94]

N. furzeri 1.3–1.9 44.9 45 [40] [30]

Stickleback 0.461 50.5 6.6 [95]

Cod 0.83 50.0 25.4 [96]

Human 3.1 46.1 66–69 NSDC Assembly GCA_000001405.17, [97, 98]
aThe estimated genome size ranges of A. limnaeus and N. furzeri are based on flow cytometry and computational methods. For all others, the genome sizes are
based on total assembly length

Table 2 Genome assembly metrics for the A. limnaeus genome
version 1.0

Metric Length/number

Total sequence length 866,963,281 bp

Total assembly gap length 171,917,903 bp

Number of scaffolds 29,785

Scaffold N50 1,098,383 bp

Scaffold L50 184 bp

Number of contigs 168,369

Contig N50 8097 bp

Contig L50 24,012 bp
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repeat content in the A. limnaeus genome is much
higher than other teleost species such as Gasterosteus
aculeatus (stickleback) and Gadus morhua (cod), but is
very similar to N. furzeri and D. rerio (Table 1). Repeat-
Modeler was able to detect approximately 30% of the as-
sembled genome as repetitive elements (Table 7).

Positive selection in A. limnaeus genes associated with
mitochondrial function
To identify genes that may support the unique biology
of A. limnaeus, we utilized a comparative approach to
find genes under possible positive selection in the
lineage. We collected highly conserved protein coding
genes from several teleost species and generated a phylo-
genetic tree with strong node support (Fig. 2;
Additional file 1: Table S1A). A. limnaeus is sister to the
Family Nothobranchiidae, which includes the African
annual killifish genus Nothobranchius as well as the
non-annual African killifish A. striatum. Of the 4152
gene families that passed our filters for PAML analysis,
105 genes were determined to have at least one signifi-
cantly selected site along the A. limnaeus branch (FDR
< 0.2, Additional file 1: Table S1B). Several GO terms
within the biological process, molecular function, and
cellular component categories are significantly enriched
among this list of genes (adjusted P ≤ 0.05, Fig. 3;
Additional file 1: Table S1C). To further interrogate
these 105 genes, we compared the list to 249 genes pre-
viously reported by Valenzano et al. to be under putative

positive selection along the N. furzeri branch [30]. Of
these 249 genes, eight orthologs were also called by
PAML as having at least one site under selection in A.
limnaeus (Fig. 4a,b). Overall, we found that 24 out of
105 (23%) of the genes under putative positive selection
in A. limnaeus annotated to nuclear genes associated
with mitochondrial biogenesis or activity (Fig. 5).

Differential expression of DII RNAs following anoxia or
exit from DII
Among the three embryo groups used in this study (DII
normoxia, DII 24 h anoxia, 4 dpd normoxia) we found
that 12,049 and 381 genes were shared between the
groups at abundance thresholds of Fragments Per Kilo-
base of transcript per Million mapped reads (FPKM) ≥ 2
and FPKM ≥100, respectively (Fig. 6).

Gene expression of DII embryos in anoxia
Following 24 h of anoxia in DII embryos, the vast major-
ity of transcripts do not change in abundance. Of the
transcripts expressed that reached our FPKM threshold,
294 transcripts increased in abundance, while 68 tran-
scripts decreased in abundance (false discovery rate,
FDR adjusted P < 0.05; Fig. 7, Fig. 8A; Additional file 1:
Table S1D). Several of the transcripts with the largest in-
creases in FPKM included proteins involved in the heat
shock response (Table 8). GO terms for genes that in-
creased in abundance were enriched for localization, me-
tabolism, and the misfolded protein process (adjusted

Table 3 CEGMA analysis report comparing completeness of different teleost genomes

Species Database Assembly Percent complete Percent partial or complete

Austrofundulus limnaeus NCBI GCA_001266775.1 68.97% (171/248) 95.96% (237/248)

Nothobranchius furzeri (FLI) NCBI GCA_001465895.2 79.44% (197/248) 96.77% (240/248)

Nothobranchius furzeri (Stanford) NCBI GCA_000878545.1 76.61% (190/248) 96.77% (240/248)

Fundulus heteroclitus NCBI GCA_000826765.1 79.44% (197/248) 96.77% (240/248)

Gadus morhua Ensembl gadMor1 63.71% (158/248) 95.97 (238/248)

Gasterosteus aculeatus Ensembl BROAD S1 86.29% (214/248) 97.58 (242/248)

Kryptolebias marmoratusa – – 83.87% (208/248) 95.16% (236/248)
aCEGMA results for K. marmoratus are from Kelley et al. [99]

Table 4 BUSCO analysis report comparing completeness of different teleost genomes

Species Database Assembly BUSCO database Complete Duplicated Fragmented Missing n

Austrofundulus limnaeus NCBI GCA_001266775.1 vertebrata 75% 1.6% 12% 11% 3023

Nothobranchius furzeri (FLI) NCBI GCA_001465895.2 vertebrata 76% 1.3% 13% 9.3% 3023

Nothobranchius furzeri (Stanford) NCBI GCA_000878545.1 vertebrata 73% 1.8% 15% 11% 3023

Danio rerio Ensembl GRCz10 vertebrata 80% 3.4% 12% 6.1% 3023

Fundulus heteroclitus NCBI GCA_000826765.1 vertebrata 80% 1.8% 11% 8.3% 3023

Gadus morhua Ensembl gadMor1 vertebrata 69% 1% 17% 13% 3023

Gasterosteus aculeatus Ensembl BROAD S1 vertebrata 85% 2.3% 9.70% 4.8% 3023

Kryptolebias marmoratusa – – vertebrata 76.5% 1.6% 10.20% 13.3% 3023
aK. marmoratus BUSCO results were obtained from Kelley et al. [99]
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P < 0.01, Fig. 9; Additional file 1: Table S1E). Of the tran-
scripts that significantly decreased in abundance, the top
four with the largest decreases in FPKM relative to nor-
moxia are all components of complex I, and all ten are
transcripts associated with mitochondria (Table 8).
Significantly enriched GO terms for genes that de-
creased in transcript abundance showed enrichment for
localization, metabolism, development, and response to
stimulus (adjusted P < 0.01, Fig. 9; Additional file 1:
Table S1F).

Gene expression following exit of DII
Relative to normoxic DII embryos, we found 7600 genes
to change in abundance in 4 dpd embryos (FDR,

Table 5 NCBI Eukaryotic Genome Annotation Pipeline feature report for the A. limnaeus genome

Feature Count Mean length (bp) Median length (bp) Min length (bp) Max length (bp)

Genes 26,157 18,385 8286 71 638,625

All transcripts 38,958 2868 2288 71 88,923

mRNA 35,329 3063 2454 183 88,923

misc_RNA 370 2747 2371 115 13,579

tRNA 441 74 73 71 87

lncRNA 2818 884 676 89 6645

Single-exon transcripts 1638 1516 1291 183 7265

coding transcripts (NM_/XM_) 1638 1516 1291 183 7265

CDSs 35,329 2011 1434 96 87,576

Exons 246,940 264 137 2 17,283

in coding transcripts (NM_/XM_) 239,150 262 136 2 17,283

in non-coding transcripts (NR_/XR_) 10,381 281 140 2 7351

Introns 215,079 2084 353 8 369,543

in coding transcripts (NM_/XM_) 210,044 2037 351 8 369,543

in non-coding transcripts (NR_/XR_) 7596 3392 463 30 180,124

Table 7 Identified repeat classes in A. limnaeus using
RepeatModeler and compared to zebrafish (D. rerio)

A. limnaeus D. rerio

Repeat Masker % 27.55 –

Tandem repeat finder % 3.13 –

Total % identifieda 30.68 52.2

Repeat class/superfamilya Type

SINE % 0.69 2.216 type I transposons

LINE % 3.89 2.58 type I transposons

LTR elements % 0.77 3.314 type I transposons

non-LTR elements – 2.495 type I transposons

DNA elements % 6.36 38.51 type II transposons

Unclassified 15.22 0.05

Simple repeats % 0.42 6.44

Low complexity 0.42 10.68
a.Repeat categories are listed as percentages of their respective whole genomes

Table 6 Support for gene models using the NCBI Eukaryotic
Genome Annotation Pipeline

Feature Count

Genes and pseudogenes 26,712

protein-coding 23,844

non-coding 2313

pseudogenes 555

genes with variants 6136

mRNAs 35,329

fully-supported 33,945

with > 5% ab initio 552

partial 11,187

with filled gap(s) 10,926

known RefSeq (NM_) 0

model RefSeq (XM_) 35,329

Other RNAs 3629

fully-supported 3188

with > 5% ab initio 0

partial 36

with filled gap(s) 36

known RefSeq (NR_) 0

model RefSeq (XR_) 3188

CDSs 35,368

fully-supported 33,945

with > 5% ab initio 639

partial 9918

with major correction(s) 3568

known RefSeq (NP_) 0

model RefSeq (XP_) 35,329
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adjusted P < 0.05; Fig. 7; Additional file 1: Table S1G). In
contrast to the comparison of transcript changes in an-
oxia, there is a roughly even split between number of
genes that increase (4139) or decrease (3469) in abun-
dance (Fig. 8a). There was very little overlap between
the transcripts that are differentially expressed in an-
oxia and upon exit from diapause II (Fig. 8b). We ob-
served several hemoglobin subunit transcripts to be
highly increased in FPKM in 4 dpd embryos, while
the top transcripts that decreased were generally
more diverse (Table 9). GO enrichment analysis for
the post-diapause II (4 dpd) embryo transcripts that
were differentially expressed indicated enrichment for
terms involved in localization, metabolic processes,
cellular processes, and development (adjusted P < 0.01,
Fig. 10; Additional file 1: Table S1H, I). Additionally, GO
term enrichment for cell cycle was unique to transcripts
that increased in abundance, while term enrichment for
regulation, signaling, locomotion, and biological adhesion
were unique for those that decreased in abundance.

Transcriptional expression of stress response genes
When compared to normoxic DII controls, we observed
101 genes related to heat shock proteins (hsps), accessory
heat shock proteins, or related to the general stress re-
sponse to be significantly differentially expressed in both
anoxia and post-DII development (Fig. 11). Although
there were not any apparent trends in expression profiles
between the two comparisons, a majority of the signifi-
cantly differentially expressed 70-kDa heat shock protein
(hsp70) family transcripts had an inverse expression pro-
file between these comparisons (Additional file 1: Table
S1J). The gene hspa4, also a part of the hsp70 family, was
also determined to be under positive selection by PAML
analysis. In A. limnaeus, the residue change in hspa4

Fig. 2 Rooted phylogenetic tree of the species used for PAML analysis.
The tree was inferred using PhyML with 100 bootstrap replications. A
GBLOCKS-filtered alignment of highly conserved coding genes was
used as input (see Materials and Methods). All nodes have 100% boot-
strap support. Cavefish = Astyanax mexicanus, Cod = Gadus morhua,
Fugu = Takifugu rubripes, Medaka = Oryzias latipes, Molly = Poecilia for-
mosa, Mummichog = Fundulus heteroclitus, Platyfish = Xiphophorus
maculatus, Stickleback = Gasterosteus aculeatus, Tetraodon = Tetraodon
nigroviridis, Tilapia = Oreochromis niloticus, Zebrafish = Danio rerio

Fig. 3 Significantly enriched GO terms for genes under putative positive selection (adjusted P-value ≤0.05). The numbers within the bars indicate
the total number of A. limnaeus genes associated with the GO term that were determined to be under putative positive selection following
PAML analysis. BP, biological process; MF, molecular function; CC, cellular component
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appears to be from an ancestral cysteine to a valine, amino
acids that are polar and nonpolar, respectively (Fig. 12).

Discussion
Size, structure, and annotation quality of the A. limnaeus
genome
The A. limnaeus nuclear genome has been previously
reported to contain 22 haploid chromosomes [38].

However, direct or sequence-based measurements of
genome size in this species has not yet been deter-
mined. The A. limnaeus genome is estimated to be
slightly larger than the cod genome, but much smaller
than N. furzeri and D. rerio. We observed the A. lim-
naeus genome to be highly repetitive, and our assembly
benefitted heavily from the use of mate-pair libraries
for scaffolding. Interestingly, nearly half of the

Fig. 4 Genes under positive selection in both N. furzeri and A. limnaeus. a Eight orthologs have at least one site under putative positive selection
in both A. limnaeus and N. furzeri. One of these shared orthologs is hspa4, which was also found to be significantly increased in expression during
anoxia in DII embryos and in post-DII embryos compared to DII controls. b Putative A. limnaeus positively selected sites of these eight orthologs
occurs both within predicted domains and between them. Numbers on the X-axis refer to amino acid location. Red, selected site; Black, con-
served domain predicted by InterProScan 5; Light blue, repeat domain

Fig. 5 Putative positively selected proteins in A. limnaeus that are associated with mitochondrial biogenesis or function. Of the 24 genes associated
with mitochondria, seven are associated with the mitochondrial ribosome, four are associated with complex I of the electron transport chain, and
three are associated with lipid metabolism related to mitochondria
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repetitive elements in the A. limnaeus genome were un-
able to be classified, a result similar to findings in
Nothobranchius and another South American annual
killifish, Austrolebias charrua [39, 40]. Comparing these
unclassified repeat elements between annual killifish
species may reveal possible conserved mechanisms of
genome expansion and evolution in killifishes. Despite
the highly repetitive structure of the A. limnaeus gen-
ome, BUSCO analysis examining 3023 conserved verte-
brate genes indicates that the A. limnaeus draft genome
has completeness and fragmentation similar to the ge-
nomes of N. furzeri and K. marmoratus, two closely re-
lated species assembled with similar strategies. Overall,
the A. limnaeus genome currently contains highly
complete gene models, but may benefit from longer
reads in the future to patch the extensively repetitive
regions occurring between genic sites.

Several mitochondrial related genes may be under
positive selection in A. limnaeus
Our phylogenetic tree places A. limnaeus sister to the
Family Nothobranchiidae, and nested within the Order
Cyprinodontiformes, which agrees with previous reports
[32, 34]. PAML analysis identified 105 genes to have at
least one significantly selected site along the A. limnaeus
branch. Several GO terms of relevance to annual killifish
biology are significantly enriched among this list of
genes, including stress tolerance and oxidation-
reduction activity [21, 41]. Reichwald et al. [31] found
seven genes under positive selection along the N. furzeri
branch and one along the N. pienaari branch, but we
did not find the same orthologs for these Nothobran-
chius species to also be under selection in the A. lim-
naeus branch using our analysis. When compared to the
list of genes under putative positive selection in N.

Fig. 6 Overlap in the expression of genes between the three groups examined in this work. Venn diagrams are shown at FPKM thresholds of ≥2
(top) and ≥100 (bottom) to compare the normoxic DII, anoxic DII, and 4 dpd embryo RNA-seq data sets used in this work
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furzeri by Valenzano et al. [30], the eight shared posi-
tively selected genes had selected sites both inside and
outside of predicted protein domain regions. This sug-
gests that selection may be operating at the level of do-
main function as well as the tertiary structure of the
proteins, and while some genes may be positively se-
lected in both lineages, there may also be extensive dif-
ferences in which genes are under selection in other
annual killifish lineages.
In a recent report by Sahm et al. [42], multiple nuclear

genes involved with mitochondrial biogenesis or activity
were also found to be under putative positive selection
along several Nothobranchius branches associated with

shortened lifespan. Our results suggest that only NAD-
H:Ubiquinone Oxidoreductase Subunit S5 (ndufs5) is
under putative positive selection along both the A. lim-
naeus branch and the Nothobranchius branch containing
the last common ancestor of N. pienaari and N. rachovii
previously reported by Sahm et al. [42]. However, the an-
nual killifish phenotype is a complex mix of several phe-
notypes and we note that our strain of A. limnaeus does
not exhibit the shortened lifespan of several Nothobran-
chius species, nor do Nothobranchius species appear to
have the extreme anoxia tolerance of A. limnaeus
(Polačik and Podrabsky, unpublished). These results
raise the possibility that the proteins under positive se-
lection in A. limnaeus or in Nothobranchius species may
be involved in different aspects of annual killifish biol-
ogy, such as with stress tolerance in A. limnaeus, and
aging in several Nothobranchius species.
Interestingly, four of the genes under putative positive

selection include NADH:Ubiquinone Oxidoreductase
accessory subunits that are a part of complex I, an en-
zyme complex located in the inner mitochondrial mem-
brane that is also the first enzyme of the mitochondrial
electron transport chain [43]. Recent evidence has sug-
gested that several complex I subunits encoded by the A.
limnaeus mitochondrial genome (mtgenome) have ap-
parent insertions or deletions at the N-terminus when
compared to multiple other teleost species within the
Order Cyprinodontiformes [44]. One of these
mtgenome-encoded complex I subunits, ND5 contains a
unique 11 amino acid insertion in the N-terminus and is
thought to interact directly with one of the complex I
accessory subunits we have identified to be under puta-
tive positive selection, ndufb6 [45]. Importantly, complex
I is thought to be a primary source of reactive oxygen
species (ROS) generation, and control of ROS produc-
tion is likely essential for surviving anoxia [46–48]. Be-
cause mitochondria perform essential energy-generating
processes, it is likely that nuclear genome evolution will
favor mutations that can accommodate changes in mtge-
nome sequence [49]. However, it is unclear if this is a
case of mitonuclear co-evolution to promote the unique
stress-tolerant phenotype of A. limnaeus, or compensa-
tion of nuclear genes to prevent complex I dysfunction.
Further investigations into the role of the complex I sub-
units and possible roles in ROS production or suppres-
sion may yield important insight into the evolution of
dormancy and anoxia tolerance in this lineage.

DII embryos have a transcriptional response to anoxia
treatment
We were interested in gene expression changes that may
facilitate extreme anoxia tolerance in A. limnaeus DII
embryos, Therefore, we used RNAseq to compare tran-
script abundance in DII embryos after 24 h of anoxia

Fig. 7 Differential abundance of anoxic DII embryos and 4 dpd
embryos relative to normoxic DII embryos. Significant abundance
changes in transcripts are seen in anoxic DII embryos (top) and in 4
dpd embryos (bottom) when compared to normoxic DII embryos.
Transcripts in grey do not have a significant difference in
abundance. Transcripts in red are significant (FDR adjusted p-value
< 0.05). FPKM, Fragments Per Kilobase of transcript per Million
mapped reads
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relative to normoxic DII embryos. Following anoxia
treatment, we observed that the majority of transcripts
do not have a significant change in abundance. This ob-
servation suggests an overall stabilization of the tran-
scriptome during exposure to anoxia consistent with

available data and theory [50–52]. Unexpectedly, 294
transcripts increased in abundance, supporting active
regulation of a small portion of the transcriptome
through either increased synthesis or possibly differential
stabilization. Not surprisingly, many of the genes with

Fig. 8 Summary of A. limnaeus embryo differential transcript abundance analysis. a Transcripts that change significantly in abundance relative to
normoxic DII embryos (FDR adjusted p-value < 0.05). b The number of significantly differentially expressed transcripts that overlap among
possible comparisons

Table 8 Top 10 genes in anoxic DII embryos with greatest transcript abundance changes relative to normoxia

Gene symbol Gene type Description P-valuea ΔFPKMb

Up LOC106513602 protein coding heat shock protein 30-like 2.12E-28 4786

pck1 protein coding phosphoenolpyruvate carboxykinase 1 6.00E-28 2099

LOC106513603 protein coding heat shock protein 30-like 3.23E-22 1332

LOC106520367 protein coding heat shock cognate 71 kDa protein-like 1.06E-30 1028

LOC106533043 protein coding heat shock protein HSP 90-alpha-like 4.86E-22 926

sqstm1 protein coding sequestosome 1 9.59E-07 873

LOC106523747 protein coding apolipoprotein A-I-like 9.82E-20 697

LOC106534642 pseudo ubiquitin-like 3.83E-02 608

LOC106535465 pseudo ubiquitin-like 3.50E-06 585

LOC106531886 protein coding wiskott-Aldrich syndrome protein family member 2-like 1.43E-02 445

Down ND6 protein coding Mitochondrially encoded NADH:Ubiquinone Oxidoreductase Core Subunit 6 1.43E-04 -1595

ND2 protein coding Mitochondrially encoded NADH:Ubiquinone Oxidoreductase Core Subunit 2 6.28E-05 − 969

ND1 protein coding Mitochondrially encoded NADH:Ubiquinone Oxidoreductase Core Subunit 1 1.10E-02 − 823

ND5 protein coding Mitochondrially encoded NADH:Ubiquinone Oxidoreductase Core Subunit 5 2.47E-02 −775

16S rRNA Mitochondrially encoded 16S ribosomal RNA 8.74E-03 − 441

LOC106511533 protein coding NADH-ubiquinone oxidoreductase chain 5-like 4.44E-02 − 429

Pseudo16S pseudo Mitochondrially encoded 16S rRNA pseudogene 1.38E-19 − 219

tRNALeu2–1 tRNA Mitochondrial tRNA Leu2 copy 1 2.73E-41 −153

tRNALeu2–2 tRNA Mitochondrial tRNA Leu2 copy 2 1.10E-34 − 149

txnip protein coding thioredoxin interacting protein 4.61E-08 −51
aFDR adjusted P-value
bChange in mean FPKM values of DII embryos in anoxia relative to DII t = 0
FPKM, Fragments per kilobase of transcript per million mapped reads
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the largest increases in abundance are associated with
the cellular stress response. Of note, two hsp30-like
transcripts ranked as numbers 1 and 3 in transcripts that
increased in abundance. Others have reported on the
importance of hsp30 proteins in the heat shock response
of desert fishes, although their functional importance
has not been experimentally explored [53, 54]. Relatively
fewer transcripts decreased in abundance, and many of
these genes are indicated by GO term enrichment ana-
lysis to be associated with metabolism. This suggests a

trend towards further decreasing metabolic processes
during anoxia even though the embryos are already in a
highly metabolically depressed state.
Interestingly, the majority of transcripts in anoxic DII

embryos that had the greatest decreases in FPKM rela-
tive to normoxic controls are associated with the mito-
chondrial transcriptome. Previous work has suggested
that regulation of mtgenome-encoded ND5 through dif-
ferential stabilization of ND5 mRNA, rather than mito-
chondrial DNA copy number, may be the rate-limiting

Fig. 9 Significantly enriched GO terms based on differential abundance analysis of anoxic and normoxic DII embryos. Only terms with an
adjusted P of < 0.01 are shown. Numbers in the bars indicate the total number of transcripts that change in abundance associated with the
respective GO term

Table 9 Top 10 genes in 4 dpd embryos with greatest transcript abundance changes relative to normoxic diapause II embryos

Gene symbol Gene type Description P-valuea ΔFPKMb

Up LOC106528963 protein coding hemoglobin embryonic subunit alpha 3.15E-38 4755

LOC106528894 protein coding hemoglobin subunit beta-like 4.10E-28 2717

LOC106523751 ncRNA uncharacterized 3.32E-26 2492

LOC106512448 pseudo fatty acid-binding protein, brain pseudogene 1.96E-08 2045

LOC106525147 protein coding hemoglobin subunit alpha-1-like 5.69E-45 1539

LOC106522944 protein coding fatty acid-binding protein, brain 1.31E-15 1483

LOC106528904 protein coding hemoglobin embryonic subunit alpha-like 1.01E-25 1370

Pseudo16S pseudo Mitochondrially encoded 16S rRNA pseudogene 9.28E-05 1281

LOC106525143 protein coding hemoglobin subunit beta-like 8.06E-41 1079

LOC106511047 protein coding prothymosin alpha-B-like 9.16E-48 1062

Down LOC106535866 protein coding heat shock cognate 70 kDa protein 2.28E-16 −14,958

LOC106517545 protein coding lipocalin-like 1.35E-25 −10,327

LOC106513764 ncRNA uncharacterized 6.84E-06 −10,299

ahsg protein coding alpha 2-HS glycoprotein 4.25E-11 − 6618

LOC106524240 protein coding galactose-specific lectin nattectin-like 1.47E-05 − 5070

ccng1 protein coding cyclin G1 6.56E-25 − 4354

LOC106529138 protein coding elongation factor 1-alpha-like 2.18E-04 − 4141

LOC106518780 protein coding keratin, type I cytoskeletal 19-like 1.06E-19 − 4062

LOC106526789 protein coding ferritin, middle subunit 3.16E-11 − 4003

ubb protein coding ubiquitin B 8.06E-03 − 3830
aFDR adjusted P-value
bChange in mean FPKM values of DII embryos in anoxia relative to DII t = 0
FPKM, Fragments per kilobase of transcript per million mapped reads
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step in the control of cellular respiration [44, 55–58].
While we did observe a significant depression of ND5
transcripts in anoxic DII embryos, we also found signifi-
cantly lower abundance of ND1, ND2, and ND6 tran-
scripts as well, which indicates that reduced respiration
in A. limnaeus may be controlled through a coordinated
reduction of multiple complex I subunit transcripts ra-
ther than just ND5. Transcript levels of 16S rRNA de-
crease during anoxia in A. limnaeus, which could lead to
a reduction in capacity for mitochondrial protein synthe-
sis. In contrast, transcript abundance for several mito-
chondrial genes increases in the anoxic turtle brain,
suggesting that their mitochondria actually respond by
increasing transcription [50]. This divergence in the
transcriptome implies different mitochondrial responses
to long-term anoxia between turtles and A. limnaeus
embryos. We also found seven nuclear-encoded proteins
with residues under putative positive selection that are
involved with mitochondrial translation. However, it is
unclear if these proteins have novel functional signifi-
cance, or if they represent nuclear compensation for rap-
idly evolving mitochondrial rRNAs following the unique
and potentially isolating population dynamics of A.
limnaeus [59].

Transcriptional response to diapause termination
While previous work has examined transcriptional
changes that may be essential for entrance into DII in an-
nual killifish [31], it is currently unclear how DII embryos

may reactivate metabolism and development through
changes in RNA expression. The transcript we observed
with the greatest decrease in abundance in post-diapause
II embryos is a heat shock cognate 70 (hsc70) protein with
a mean change of − 14,958 FPKM. High abundance of this
transcript in diapausing embryos could initially be inter-
preted to play a role in the increased tolerance to environ-
mental stress observed in these embryos. However, DII
and 4 dpd embryos have a similar tolerance of anoxia,
with 4 dpd embryos possibly having even higher tolerance,
which would suggest a different role for this transcript if
the high abundance is translated to high levels of proteins
[11]. Interestingly, previous work has shown that hsc70
overexpression promotes degradation of ion channels as
they are trafficked through the cell [60]. DII embryos are
characterized by an exceptionally low ion permeability
that decreases steadily during post-DII development [10],
and therefore reduced hsc70 expression may promote in-
creased routing of ion channels to cell membrane surfaces.
This would be a unique function for hsc70 in fish embryos
that has not yet been described or explored.
Another gene of interest that decreases significantly

during post-diapause II development is cyclin G1. This
cyclin is known to interact with p53 and is associated
with cell cycle arrest at a number of different cell cycle
checkpoints [61, 62]. Further exploration of the func-
tional significance of this transcript and its signaling net-
works may lead to the key players that regulate exit
from the cell cycle during diapause in this species.

Fig. 10 Significantly enriched GO terms based on differential abundance analysis of 4 dpd and normoxic DII embryos. Only terms with an
adjusted P of < 0.01 are shown. Numbers in or near the bars indicate the total number of differentially expressed A. limnaeus genes associated
with the respective GO term
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Importantly, most of the transcripts that change dras-
tically during PDII development very likely have little to
do with the regulation of diapause, but rather are due to
the resumption of active development and the associated
changes in tissue differentiation and morphogenesis. For
example, several hemoglobin transcripts are among the
top ten genes with the greatest increase in abundance
compared to diapause II embryos. This increase in abun-
dance coincides with the appearance of red blood cells
in the embryos and likely supports their transition to
aerobic metabolism as they continue development [7, 22].
A more thorough and mechanistic analysis of pre- and
post-diapause expression patterns will be required to iden-
tify putative regulators of metabolic dormancy.

Heat shock proteins in annual killifish anoxia tolerance,
development, and evolution
Our two RNA-seq comparisons provided a unique op-
portunity to study genes that may have roles in either

stress tolerance or embryonic development, and in some
cases, both. Between these two RNA-seq analysis com-
parisons (DII 24 h anoxia or 4 dpd embryos relative to
DII normoxia), we found 101 genes related to hsps,
accessory heat shock proteins, or related to the general
stress response, to be differentially expressed in both
comparisons. Hsps are a conserved group of molecular
chaperones that function to facilitate proper folding of
newly translated or misfolded proteins during normal
and stressed states, but also can have several other func-
tions related to cell cycle, homeostasis, signaling, and
apoptosis [63–65]. We observed differential expression
of several hsps from the 90, 70, 60, 50, 40, and small
kDa classes in both comparisons, and in the anoxia-
treated DII embryos we also found a significant GO
term enrichment for genes involved in protein refolding
and response to topologically incorrect proteins. Heat
shock proteins from the 30 kDa, 70 kDa, and 90 kDa
families were represented in the list of top 10 transcripts

Fig. 11 Abundance of heat shock protein related transcripts in anoxic DII embryos and 4 dpd embryos. Genes shown are relative to normoxic DII
embryos and have significant differential abundance (FDR adjusted p-value < 0.05). Genes within families were ordered by highest to lowest fold-change
for each comparison. Lines between the two heat maps connect the same genes. Fold changes for the heat map are log2 transformed
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with the greatest increase in abundance in response to
anoxia in diapausing embryos and are likely a direct re-
sponse to stress. However, we also observed a diversity
of hsp transcripts within the 70 kDa and 40 kDa families
that increased in abundance during post-diapause II de-
velopment. Notably, 20 out of 35 hsp70 family tran-
scripts had an inverse abundance profile when the two
groups were compared, suggesting stage-specific roles in
development that may be independent of stress toler-
ance. Thus, A. limnaeus may be a powerful model for
teasing apart the role of hsps in normal development
and stress tolerance, both of which likely contribute in
major ways to buffering and canalization during verte-
brate development.
One of the molecular chaperones that increased in ex-

pression for both comparisons is also under putative
positive selection in A. limnaeus and N. furzeri [30]. This
gene, hspa4, is a molecular chaperone from the well-
studied hsp70 family, and although it was initially
thought to be interchangeable with hsc70, it has been
previously shown to have separate cellular functions
[60]. In hsp70 family proteins, key replacements of cyst-
eine residues with other amino acids has been reported
to reduce redox sensitivity and alter responses to oxida-
tive stress (Miyata et al. 2012). Interestingly, the

presence of an inducible hsp70 isoform that is constitu-
tively expressed during A. limnaeus early embryonic de-
velopment and diapause has been previously reported
[66]. We found that hspa4 transcript abundance in-
creased by 26 FPKM (~ 2.5-fold) in anoxic DII embryos.
An increase in hsp70 following anoxia has also been re-
ported in the brains of freshwater turtles, but not the
brine shrimp Artemia franciscana, and thus may be a
conserved response in vertebrates [57, 67]. We also
found a significant increase (37 FPKM, ~ 3-fold) in
abundance of hspa4 transcripts in post-DII (4 dpd) rela-
tive to normoxic DII embryos. Importantly, expression
of inducible hsp70 is usually not present in teleost em-
bryos during non-stressful conditions [68–70]. It is pos-
sible that unstressed 4 dpd embryos increase expression
of hspa4 during normal development to provide a rapid
response to environmental insults, thus suggesting a
unique survival strategy among developing aquatic em-
bryos. Taken together, these data indicate that hspa4 has
both physiological and evolutionary importance for
stress tolerance, development, and evolution in A. lim-
naeus biology and is an interesting gene for future
studies.

Conclusions
Our release of the A. limnaeus genome is the first pub-
licly available South American annual killifish genome
and complements recent genome publications of the
African annual killifish Nothobranchius furzeri by two
independent research groups [30, 31]. Despite the high
repeat content of the A. limnaeus genome, the combin-
ation of a merged de novo assembly approach and a vast
amount of RNA-seq data has allowed us to generate a
draft A. limnaeus genome with high-confidence gene an-
notations, on par with other teleost assemblies. This
genome assembly is a critical tool for exploration of an-
nual killifishes at the molecular and genetic levels, and
will likely significantly accelerate advances in our under-
standing of this unique group of vertebrates.

Methods
Genome size estimation by flow cytometry
Zebrafish and chicken blood were generously provided
by Dr. Kim Brown (Portland State University) and Chris-
sie Zaerpoor (Kookoolan Farms, Yamhill, OR), respect-
ively. Whole blood from zebrafish (n = 2), chicken (n =
1), or A. limnaeus (n = 3) was homogenized in 1 ml of
Galbraith buffer (30 mM sodium citrate, 45 mM MgCl2,
20 mM MOPS, 0.1% Triton-X 100, 1 mg ml− 1 RNAse
A, pH 7.2) on ice using a Sorvall Omni-mixer (speed
setting 2) and a loose-fitting Teflon pestle for about 20
strokes. Three technical replicates of the chicken blood
were analyzed. Homogenates were filtered through a
35 μm mesh screen by centrifugation at 100 x g for

Fig. 12 Representative multiple species alignment of hspa4 showing
the selected site in A. limnaeus. Genes were aligned using PRANK
and filtered using GUIDANCE. The alignment was visualized using
Geneious software. Residue locations are relative to the start of the
filtered alignment consensus
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1 min at 4 °C. Dissociated nuclei were stained in
1 mg ml− 1 propidium iodide for 30 min at room
temperature and fluorescence intensity were measured
using the BD Accuri C6 flow cytometer at a flow rate of
14 μl min− 1 for 100,000 counts (BD Biosciences, San
Jose, CA). Counts were gated manually to remove noise
from cellular debris. Fluorescence peaks were identified
and analyzed with the included BD CSampler Software.
The genome size of A. limnaeus was inferred from linear
regression of zebrafish and chicken nuclei fluorescence
relative to assembled genome lengths for those two spe-
cies, including all gaps (Ensembl release 77).

Total genomic DNA extraction of adult tissue
DNA extraction of adult tissues
Adult A. limnaeus fish used for sequencing and for
spawning were cared for as previously described by
Podrabsky (1999) and in accordance with an approved
Portland State University Institutional Animal Care and
Use Committee protocol (PSU protocol #33). The tissue
used for single-individual Illumina sequencing was de-
rived from an adult A. limnaeus male (3 months post-
hatch, 3.7 g wet mass). The fish was euthanized by
immersion in an ice bath for approximately five minutes
until fully unresponsive to stimuli followed by cervical
transection. Liver, white muscle (skin and scales re-
moved), and brain tissue were removed and transferred
to DNA extraction buffer (10 mM Tris, 100 mM EDTA,
0.5% SDS, 200 μg ml− 1 Proteinase K (Thermo Scientific
#EO0491), pH 8.0) at a ratio of 1 mg tissue per 10 μl
buffer. Tissues were gently homogenized using a Teflon
pestle in 1.5 ml microcentrifuge tubes and incubated for
3 h at 50 °C with agitation every 20–30 min. DNA was
extracted by briefly vortexing the homogenates with 1
vol phenol (equilibrated with 10 mM Tris-HCl pH 8.0,
1 mM EDTA) followed by centrifugation at 5000 x g for
10 min at 4 °C. The aqueous phases were collected using
a wide-bore pipette and extracted with phenol again as
described above. Following the second phenol extrac-
tion, the aqueous phase containing the DNA was ex-
tracted a third time by gentle mixing with 1 volume of
chloroform:phenol (1:1) followed by centrifugation at
5000 x g for 10 min at 4 °C. The aqueous phase was col-
lected and the DNA precipitated by the addition of NaCl
(final concentration of 200 μM) and 2 volumes of 100%
EtOH followed by gentle mixing via tube inversion.
DNA was pelleted by centrifugation at 16,000 x g for
10 min at 4 °C. The DNA pellet was washed twice with
1 ml 70% EtOH. After each wash, the DNA was pelleted
by centrifugation at 16,000 x g for 5 min at 4 °C. The
air-dried (5–10 min at room temperature) DNA pellet
was resuspended in 500 μl of RNAse buffer (10 mM
Tris, 5 mM EDTA) with 100 μg ml− 1 DNAse-free
RNAse A (Thermo Scientific #EN0531) and incubated at

37 °C for 45 min with occasional tube inversion. The
samples were extracted twice more as described above
with chloroform:phenol (1:1) followed by precipitation
using 0.1 vol of 3 M sodium acetate (pH 5.2), and 2 vol
of 100% EtOH. DNA was pelleted by centrifugation at
16,000 x g for 10 min at 4 °C and the pellet was washed
twice with 1 ml 70% EtOH as described above. The
DNA pellets were dried briefly at room temperature and
resuspended in 100 μl of buffer EB (10 mM Tris-Cl
pH 8.5, Qiagen #19086) at 37 °C with occasional agita-
tion until pellets dissolved completely.
The tissue for mixed-individual Illumina sequencing

was collected from three adult male fish. Fish were eu-
thanized as described above and whole brains were ex-
tracted. The three brain tissues were extracted using the
Qiagen DNeasy Blood and Tissue Kit (Qiagen #69504)
according to the manufacturer’s instructions.

DNA quantification and quality assessment
DNA purity was determined by observation of A260/A280

ratios between 1.8–1.9 using an Infinite M200 Pro plate
reader equipped with a NanoQuant plate (Tecan, San
Jose, CA, USA), 2 μl of sample, and default software set-
tings (i-control software, Tecan). DNA concentration
was determined by using the Quant-iT dsDNA Assay
Kit, broad range (Thermo Fisher Scientific #Q33130) ac-
cording to manufacturer’s instructions. DNA integrity
was confirmed by observation of high-molecular weight
DNA above 20 kb following electrophoresis of 1 μg of
total DNA on a 1% agarose gel.

Sequencing and read quality control
Illumina sequencing
DNA sequencing libraries were prepared and sequenced
at the University of Oregon High Throughput DNA se-
quencing and Genomics facility. Purified DNA was soni-
cated to an average size of 170 bp and was prepared for
sequencing using the Nextera library prep kit (Illumina).
Larger fragments were sonicated into size ranges of 2 kb –
3 kb, 5 kb – 8 kb, and 10 kb – 15 kb. These large frag-
ments were size-selected by gel electrophoresis and were
used for mate-pair libraries (Additional file 2: Table S2A).
Fragment and mate-pair libraries from the single A. lim-
naeus male were sequenced on the Illumina Hi-Seq 2500
platform with 101 bp paired-end reads. Mate-pair libraries
from the mixed individuals were sequenced on the Illu-
mina Hi-Seq 2000 platform with 101 bp paired-end reads.

Read quality control
Adapters were removed from Illumina reads using Trim-
momatic v0.33 [71] in palindrome mode and using the
included Illumina adapter list (seed mismatches = 2, pal-
indrome clip threshold = 30, simple clip threshold = 7,
minimum adapter length = 1, keep both reads = true).
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Error-correction was performed using the Allpaths error
correction module [36]. For scaffolding, mate-pair librar-
ies were further trimmed to 37 bp in length to reduce
instances of chimeric reads and remaining reads with
quality scores >Q10 across the entire read were used.

Genome assembly strategy
A summary of the assembly and annotation strategy
used for the A. limnaeus genome is shown in Fig. 13.
Adapter-free reads were de novo assembled using two
algorithm strategies. The library types and insert sizes
used for genome assembly are shown in Additional file
2: Table S2A. First, the untrimmed reads were assembled
using the Allpaths-LG pipeline version r44837, which is
based on a modified de Brujin graphing algorithm [36].
A total of 707,851,166 fragment library and 678,076,430
jumping library adapter-free reads were used as input

into Allpaths-LG. As suggested by the Allpaths-LG man-
ual, reads that failed to pass the Illumina purity filter
were retained in the read pool for de novo assembly. In
a separate assembly, the fragment reads were error cor-
rected using Allpaths-LG and de novo assembled using
JR-assembler, an assembler that is based on read overlap
to extend contigs [72]. Prior to assembly with JR-
assembler, reads were trimmed to 90 bp and filtered
using the included mdust algorithm. Contigs were or-
dered into scaffolds within the individual assemblies by
using SSPACE Basic 3.0 using the mate-pair libraries
listed in Additional file 2: Table S2A and settings that re-
quired at least three connections with 70% identity to scaf-
fold two contigs (−k = 3, −a = 0.7) [73]. The resulting
scaffolds were then merged between Allpaths-LG and JR-
assembler to provide the best representation of unique scaf-
folds from both assemblies. L_RNA_Scaffolder software

Fig. 13 Flowchart for assembly and annotation of the A. limnaeus genome. The A. limnaeus genome was assembled by merging assemblies from
Allpaths-LG and JR-assembler. Scaffolds were formed using SSPACE and L_RNA_Scaffolder. The draft genome was then annotated using the NCBI
Eukaryotic Genome Annotation pipeline
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was used to improve the assembly by breaking apart and
rejoining poorly supported scaffolds using a preliminary
transcriptome derived from a 12 dpd embryo RNA-seq
dataset (Riggs and Podrabsky, unpublished) [74]. The as-
sembly was run through a final round of SSPACE Basic
v3.0 and a custom script based on IMAGE (Tsai et al.
2010) was used to close gaps. The Austrofundulus limnaeus
genome v1.0 has been screened and cleaned of contaminat-
ing contigs, and all contigs 200 bp or smaller were
removed.

Automated annotation by NCBI
The NCBI eukaryotic annotation pipeline integrates ab
initio gene modeling and protein/transcript/RNA-seq
alignments to annotate genomes. The A. limnaeus gen-
ome v1.0 was submitted to NCBI and annotated using
version 6.4 of this pipeline. A total of 114 RNA-seq bio-
samples (9,297,509,096 RNA-seq reads) from various
treatments and stages of A. limnaeus embryonic devel-
opment were obtained via SRA and used for gene pre-
diction (Additional file 2: Table S2B).
Libraries of trimmed sequence reads (see methods

below) grouped by stages and treatment were assembled
de novo into transcriptome assemblies using Trinity soft-
ware (version 2.0.6) [75], using a default k-mer length of
25 nucleotides (nts) for overlapping into contiguous se-
quences and the minimum contiguous sequence length
setting (min_contig_length) at 200 nts. Assembled se-
quences have been deposited into the NCBI Transcrip-
tome Shotgun Assembly (TSA) database with the TSA
records listed in Additional file 2: Table S2C.

Analysis of genome assembly
Genome completeness of Austrofundulus limnaeus v1.0
was estimated with CEGMA version 2.5 on the CEGMA
virtual machine v1.0 [76] http://korflab.ucdavis.edu/data-
sets/cegma/cegma_vm.html). CEGMA scans genomic
sequences for homologous sequences to 248 highly con-
served eukaryotic genes. Genome completeness was also
estimated with BUSCO version 1.22 using the vertebrata
BUSCO profile [77]. BUSCO dependencies included AU-
GUSTUS v2.2.2, BLAST+ 2.2.28, and HMMER v3.1b2.
Repetitive DNA elements in the A. limnaeus genome,
such as transposons, were identified with RepeatModeler
1.0.8 [78].

Protein clustering analysis
Protein coding sequences (CDS) were downloaded
from BioMart (Ensembl Genes release v82) or Gen-
bank. CDS inferred from transcriptome assemblies
were also used for several Nothobranchius species and
one non-annual killifish species, Aphyosemion stri-
atum (Additional file 1: Table S1A). CDS were

translated to amino acid sequences and only the lon-
gest isoform from each gene was retained for cluster-
ing analysis. Gene family clusters were inferred using
Proteinortho v5.11 with default settings [79].

Phylogenetics
Genes identified as single-copy orthologs that were
included in high-confidence clusters (Proteinortho
Alg.-Conn score = 1) were aligned using MAFFT
v7.158b and trimmed with GBLOCKS [80, 81]. The
best-fit amino acid substitution model was determined
using the resulting alignment as input to ProtTest
3.4.1 [82]. Phylogenetic inference using maximum-
likelihood on this alignment was performed using
PhyML v3.1 with the JTT + I + G protein substitution
model and 100 bootstrap replications [83]. Based on
findings by the Ensembl Compara team, our resulting
tree was rooted by setting Zebrafish and Cavefish as
outgroups (http://dec2016.archive.ensembl.org/info/
about/speciestree.html).

Positive selection analysis
For positive selection analysis, we considered all gene
clusters identified by Proteinortho that included an
ortholog from A. limnaeus, N. furzeri, the non-annual
killifish A. striatum, at least one other Nothobranchius
species, and two other teleost fish (a minimum of six
single copy genes from all the species). Coding se-
quences in the filtered clusters were aligned using
PRANK v.140603 [84]. Poorly aligned regions were
trimmed using GUIDANCE v2.0 [85]. Genes and indi-
vidual amino acids under positive selection in the A. lim-
naeus lineage were then identified using the branch-site
model in CODEML implemented in the Phylogenetic
Analysis by Maximum Likelihood package (PAML) [86].
The phylogenetic tree generated using PhyML was used
as the input guide tree (Fig. 2. To generate a high confi-
dence list of genes and sites under possible positive se-
lection in A. limnaeus, we considered genes that were
(1) identified by PAML to have at least one site under
selection along the A. limnaeus branch, (2) did not have
gaps within ±5 amino-acids from the putatively selected
sites, and (3) had an FDR-corrected p-value of less than
0.2 (< 20% FDR) for the sites. In our analysis, an FDR of
0.2 corresponded approximately to an uncorrected P-
value of 0.01. We compared the resulting list of posi-
tively selected proteins in A. limnaeus to ones previously
reported to be under positive selection in N. furzeri
using an independently annotated genome [30]. To val-
idate orthology between the two N. furzeri annotations
and A. limnaeus, we performed an additional Protei-
northo analysis that omitted the annual killifish tran-
scriptomes but included both N. furzeri proteomes. This
second Proteinortho output was then used to ensure
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that the proteins reported to be under positive selection
in the N. furzeri genome by Valenzano et al. [30] were in
valid clusters that also contained expected orthologs of
the NCBI annotated N. furzeri genome as well as A. lim-
naeus. Finally, A. limnaeus proteins that were also under
putative positive selection in N. furzeri were used as in-
put into InterProScan 5.24–63.0 (https://www.ebi.ac.uk/
interpro/interproscan.html) to predict protein domains.

Embryo sampling and poly-A RNA sequencing
A. limnaeus embryos were collected from spawning
adults according to previously established husbandry
methods [35]. Embryos were maintained at 25 °C in
darkness until DII [15, 17, 22]. For anoxia exposures,
DII embryos were exposed to 24 h of anoxia at 25 °C in
a Bactron III anaerobic chamber (Sheldon Manufactur-
ing, Cornelius, OR) [87]. To obtain post-diapause II em-
bryos, diapause was experimentally broken by exposing
embryos to continuous light for 48 h at 30 °C. Embryos
were then returned to 25 °C in darkness until staging at
4 days post diapause (dpd) [22]. For each treatment (DII
normoxia, DII 24 h anoxia, and 4 dpd) four biological
replicates (n = 4), comprised of 20 embryos each, were
flash-frozen and stored at − 80 °C until RNA extraction.
Total RNA was extracted using TRIzol reagent (Invitro-
gen Inc., Carlsbad, California) as previously described
[88]. cDNA libraries were prepared using the Illumina
TruSeq RNA Sample Preparation kit (v2, Illumina, San
Diego, CA, USA) following the manufacturer’s instruc-
tions with 1 μg of total RNA as starting material. The
purified cDNA libraries were quantified by qPCR and
their quality was confirmed by a 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, CA, USA) using a DNA
1000 chip. The libraries were sequenced (100 nt paired-
end reads, 4 samples multiplexed per lane on the flow
cell) on an Illumina HiSeq 2000 at Oregon Health & Sci-
ence University.

Analysis of poly-a RNA sequence data
The following analyses were performed in a UNIX envir-
onment on the Portland State University computing
cluster. Sequence quality was initially assessed using
FastQC, version 0.10.1 [89] to ensure high quality data.
Sequence reads were filtered on quality scores and
trimmed for the presence of adapter sequences using
Trimmomatic [71] with the settings “ILLUMINA-
CLIP:2:30:7:1:true”, “SLIDINGWINDOW:5:15”, “LEAD-
ING:20”, “TRAILING:20”, and “MINLEN: 25”. Quality
reads were mapped to the A. limnaeus genome 1.0 using
the –very-fast-local preset in Bowtie2 [90]. Preserved
paired reads after trimming were aligned in paired-end
mode and any orphaned mates after trimming were
aligned in single-end mode. These data sets were depos-
ited into the SRA with the accession numbers listed in

Additional file 2: Table S2D. Reads that aligned to the A.
limnaeus nuclear and mitochondrial [44] genome with 0
mismatches were used for expression analyses. Tran-
script counts per gene (union mode) were generated for
all samples using the summarizeOverlaps function of the
GenomicAlignments package from Bioconductor [91]
and the NCBI A. limnaeus Genome Annotation Release
100. Count matrices were filtered for genes with 1 or
more normalized counts summed across all replicates.
Gene abundances were calculated as FPKM and differ-
ential expression analysis was performed using DESeq2
in the R Bioconductor package. Differential gene expres-
sion was determined on gene count data using the nega-
tive binomial distribution and estimations of mean-
variance dependence [92] using a Benjamini-Hochberg
multiple comparisons adjusted FDR of 5%.

Gene ontology enrichment analysis
For differentially expressed genes and genes identified as
being under possible positive selection in A. limnaeus,
we inferred gene ontology (GO) terms using human
orthologs. A BLASTp search against A. limnaeus pro-
teins was run using human proteins obtained from
Ensembl (Assembly GRCh38, Release 37). The top hit
for each gene with a minimum e-value of 10− 5 was used
to infer orthology. GO terms for the orthologous genes
were obtained using the online UniProt Retrieve/ID
mapping tool. We used hypergeometric test imple-
mented in the Bioconductor package GoStats [93] to de-
termine GO term enrichment. For the genes under
possible positive selection, we used all the filtered genes
input into PAML as background. For RNA-seq, genes
with an average FPKM of at least 2 in either of the
groups being compared were used as background.

Additional files

Additional file 1: Spreadsheet containing Tables S1A-J. The
spreadsheet contains supplemental information on the species used for
clustering analysis, positive selection results, GO term enrichment results,
differential transcript abundance results, and Hsp70 family transcript
abundance results. (XLSX 997 kb)

Additional file 2: Spreadsheet containing Tables S2A-D. The spreadsheet
contains information on the libraries used for assembly and annotation of
the A. limnaeus genome. In addition, the spreadsheet contains information
on the RNA-seq libraries used for differential expression analysis.
(XLSX 65 kb)
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